skip to main content


Search for: All records

Creators/Authors contains: "Balakrishnan, Christopher N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The neurogenomic mechanisms mediating male–male reproductive cooperative behaviours remain unknown. We leveraged extensive transcriptomic and behavioural data on a neotropical bird species (Pipra filicauda) that performs cooperative courtship displays to understand these mechanisms. In this species, the cooperative display is modulated by testosterone, which promotes cooperation in non‐territorial birds, but suppresses cooperation in territory holders. We sought to understand the neurogenomic underpinnings of three related traits: social status, cooperative display behaviour and testosterone phenotype. To do this, we profiled gene expression in 10 brain nuclei spanning the social decision‐making network (SDMN), and two key endocrine tissues that regulate social behaviour. We associated gene expression with each bird's behavioural and endocrine profile derived from 3 years of repeated measures taken from free‐living birds in the Ecuadorian Amazon. We found distinct landscapes of constitutive gene expression were associated with social status, testosterone phenotype and cooperation, reflecting the modular organization and engagement of neuroendocrine tissues. Sex‐steroid and neuropeptide signalling appeared to be important in mediating status‐specific relationships between testosterone and cooperation, suggesting shared regulatory mechanisms with male aggressive and sexual behaviours. We also identified differentially regulated genes involved in cellular activity and synaptic potentiation, suggesting multiple mechanisms underpin these genomic states. Finally, we identified SDMN‐wide gene expression differences between territorial and floater males that could form the basis of ‘status‐specific’ neurophysiological phenotypes, potentially mediated by testosterone and growth hormone. Overall, our findings provide new, systems‐level insights into the mechanisms of cooperative behaviour and suggest that differences in neurogenomic state are the basis for individual differences in social behaviour.

     
    more » « less
  2. Free, publicly-accessible full text available May 1, 2024
  3. Identifying the molecular process of complex trait evolution is a core goal of biology. However, pinpointing the specific context and timing of trait-associated changes within the molecular evolutionary history of an organism remains an elusive goal. We study this topic by exploring the molecular basis of elaborate courtship evolution, which represents an extraordinary example of trait innovation. Within the behaviorally diverse radiation of Central and South American manakin birds, species from two separate lineages beat their wings together using specialized “superfast” muscles to generate a “snap” that helps attract mates. Here, we develop an empirical approach to analyze phylogenetic lineage-specific shifts in gene expression in the key snap-performing muscle and then integrate these findings with comparative transcriptomic sequence analysis. We find that rapid wing displays are associated with changes to a wide range of molecular processes that underlie extreme muscle performance, including changes to calcium trafficking, myocyte homeostasis and metabolism, and hormone action. We furthermore show that these changes occur gradually in a layered manner across the species history, wherein which ancestral genetic changes to many of these molecular systems are built upon by later species-specific shifts that likely finalized the process of display performance adaptation. Our study demonstrates the potential for combining phylogenetic modeling of tissue-specific gene expression shifts with phylogenetic analysis of lineage-specific sequence changes to reveal holistic evolutionary histories of complex traits. 
    more » « less
  4. Abstract

    The recognition of and differential responses to salient stimuli are among the main drivers of behavioral plasticity, yet, how animals evolve and modulate functional responses to novel classes of antagonistic stimuli remain poorly understood. We studied free-living male red-winged blackbirds (Agelaius phoeniceus) to test whether gene expression responses in blood are distinct or shared between patterns of aggressive behavioral responses directed at simulated conspecific versus heterospecific intruders. In this species, males defend territories against conspecific males and respond aggressively to female brown-headed cowbirds (Molothrus ater), a brood parasite that commonly lays eggs in blackbird nests. Both conspecific songs and parasitic calls elicited aggressive responses from focal subjects and caused a downregulation in genes associated with immune system response, relative to control calls of a second, harmless heterospecific species. In turn, only the conspecific song treatment elicited an increase in singing behavior and an upregulation of genes associated with metabolic processes relative to the two heterospecific calls. Our results suggest that aspects of antagonistic behaviors to both conspecifics and brood parasites can be mediated by similar physiological responses, suggestive of shared molecular and behavioral pathways involved in the recognition and reaction to both evolutionarily old and new enemies.

     
    more » « less
  5. The vertebrate basal forebrain and midbrain contain a set of interconnected nuclei that control social behavior. Conserved anatomical structures and functions of these nuclei have now been documented among fish, amphibians, reptiles, birds and mammals, and these brain regions have come to be known as the vertebrate social behavior network (SBN). While it is known that nuclei (nodes) of the SBN are rich in steroid and neuropeptide activity linked to behavior, simultaneous variation in the expression of neuroendocrine genes among several SBN nuclei has not yet been described in detail. In this study, we use RNA‐seq to profile gene expression across seven brain regions representing five nodes of the vertebrate SBN in a passerine bird, the wire‐tailed manakinPipra filicauda. Using weighted gene co‐expression network analysis, we reconstructed sets of coregulated genes, showing striking patterns of variation in neuroendocrine gene expression across the SBN. We describe regional variation in gene networks comprising a broad set of hormone receptors, neuropeptides, steroidogenic enzymes, catecholamines and other neuroendocrine signaling molecules. Our findings show heterogeneous patterns of brain gene expression across nodes of the avian SBN and provide a foundation for future analyses of how the regulation of gene networks may mediate social behavior. These results highlight the importance of region‐specific sampling in studies of the mechanisms of behavior.

     
    more » « less
  6. Abstract

    Auditory communication in humans and other animals frequently takes place in noisy environments with many co‐occurring signallers. Receivers are thus challenged to rapidly recognize salient auditory signals and filter out irrelevant sounds. Most bird species produce a variety of complex vocalizations that function to communicate with other members of their own species and behavioural evidence broadly supports preferences for conspecific over heterospecific sounds (auditory species recognition). However, it remains unclear whether such auditory signals are categorically recognized by the sensory and central nervous system. Here, we review 53 published studies that compare avian neural responses between conspecificversusheterospecific vocalizations. Irrespective of the techniques used to characterize neural activity, distinct nuclei of the auditory forebrain are consistently shown to be repeatedly conspecific selective across taxa, even in response to unfamiliar individuals with distinct acoustic properties. Yet, species‐specific neural discrimination is not a stereotyped auditory response, but is modulated according to its salience depending, for example, on ontogenetic exposure to conspecificversusheterospecific stimuli. Neuromodulators, in particular norepinephrine, may mediate species recognition by regulating the accuracy of neuronal coding for salient conspecific stimuli. Our review lends strong support for neural structures that categorically recognize conspecific signals despite the highly variable physical properties of the stimulus. The available data are in support of a ‘perceptual filter’‐based mechanism to determine the saliency of the signal, in that species identity and social experience combine to influence the neural processing of species‐specific auditory stimuli. Finally, we present hypotheses and their testable predictions, to propose next steps in species‐recognition research into the emerging model of the neural conceptual construct in avian auditory recognition.

     
    more » « less
  7. null (Ed.)
    Abstract High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species 1–4 . To address this issue, the international Genome 10K (G10K) consortium 5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences. 
    more » « less
  8. null (Ed.)